

- LDPE- Low Density Polyethylene	
LTH 1922	Pa

Page: 1 of 2

Rev: 4

TEC-PRO-PDS-007

Process Optimization

Kosar Shimi +9821 - 43462000 info@kosar.co www.kosar.co

Typical Data

- حويرس	, r			
r Shimi	Properties	Value	unit	Test method
43462000 kosar.co	Polymer Properties			
kosar.co kosar.co	MFI (190 °C /2 .16 Kg)	22	dg/min	ISO 1133
	MFI (190 °C /5 Kg)	75	dg/min	ISO 1133
	MVR (190 °C /2 .16 Kg)	29	ml/10min	ISO 1133
^	MVR (190 °C /5 Kg)	98	ml/10min	ISO 1133
/ >	Density	919	Kg/m3	ISO 1183 (A)
//	Thermal Properties			
1915	Heat deflection temperature at 0.45MPa (HDT/B)	39	°C	ISO 75
	Vicat softening temperature at 10N (VST/A)	82	°C	ISO 306
	Melting Point	105	°C	DIN 53765
1415	Enthalpy change	104	j/g	DIN 53765
	Mechanical properties			
	Stress at yield	8	MPa	ISO 527/2
/	Strass at break	7	MPa	ISO 527/2
	Stylain at break	400	%	ISO 527/2
	Tensile modulus	175	MPa	ISO 527/2
	Creen modylus (After 1 nour)	80	MPa	ISO 899
	Creep modulus (After 19 00 h our)	45	MPa	ISO 899
	Notched Izod at +23°C	42	KJ/m^2	ISO 180 A
	Notched Izod at 30°C	5	KJ/m ²	ISO 180 A
	Notched Tensile impact strength	86	KJ/m ²	ISO 8256/1B
	Elongation at break	8.4	%	ISO 8256/1B
	Maximum Tension	16	MPa	ISO 8256/1B
	Hardness Shore D	25	-	ISO 868
	Ball indentation test			
	Applied load Ball indentation hardness	49	N	ISO 2039-1 ISO 2039-1
	ESCR ESCR) i /	Ci ^m	SABTEC Method
	Additive		\exists /))
	Antioxidant			<u>/-</u>
				/

Application
LTH 1922 is specially developed for applications that require a good balance between flow properties and mechanical properties, e.g. toys, household articles, clamping lids.

General information

LTH 1922 has been manufactured using SABTEC licensed technology.

	Process Optimization			
	Doc Name:	Product Data sheet - LDPE- Low Density Polyethylene LTH 1922	Page: 2 of 2	
ASPC	Doc No.	TEC-PRO-PDS-007	Rev: 4	

Packaging

Supplied in pellet form and can be packaged in 25kg bags, 1 ton semi bulk or 17 ton bulk.

كوثرشيـمى Kosar Shimi +9821 - 43462000 info@kosar.co www.kosar.co

Food packaging

The above mentioned grade meets the relevant requirements of plastics directive 2002/72/EC (06-08-2002) and its amendments till directive 2008/39EC relating to plastic materials and articles intended to come into contact with foodstuffs.

Pharmaceutical Application

The above particles grade meets the requirements of the European pharmacopeia version 6 section 3.1.5 for pharmacoutical application.

Conveying

Conveying equipment should be designed prevent accumulation of fines and dust particles can, under certain conditions, pose an explosion hazard We recommend that the conveying system used:

- 1. be equipped with adequate filters
- 2. is operated and maintained in such a manner to ensure no leaks develop
- 3. that adequate grounding exists at all times

We further recommended that good housekeeping will practiced throughout the facility

Storage

As ultraviolet light may cause a change in the material, all lesins should be protected from direct sunlight and/or heat during storage. The storage location should also be dry, dust free and the amoient temperature should not exceed 50 OC. It is also advisable to process polyethylene resins (in pelletized or powder from) within 6 months after delivery, this because also excessive aging of polyethylene can lead to a deterioration in quality

Handling

Minimal protection to prevent possible mechanical or thermal injury to the eyes. Fab ication areas should be ventilated to carry away fumes or vapors.

Combustibility

Polyethylene resins will burn when supplied adequate heat and oxygen. They should be handled and stored away from contact with direct flames and/or other ignition sources .in burning; polyethylene resins contribute high heat and may generate a dense black smoke. Fires can be extinguished by conventional means with water and mist preferred. In enclosed areas, fire fighters should be provided with self contained breathing apparatus.